It was not expected that such similar radical chain mechanisms would selectively yield thexyl products for tin and germanium vs. the dimethylsilyl products in the case of molybdenum hydrides. However, analysis employing the steady-state approximation for the radical species in (2)-(5) predicts that, irrespective of initiation, the product ratio for this mechanism is given by

$$\frac{[3a]}{[2a]} = \frac{k_1}{k_3} \frac{[1a]/[k_2]}{[1a]/[k_2]} \text{, where } 3a \text{ is the thexyl product in analogy to the group 14 derivatives.}$$

In other words, formation of the thexyl product should be favored by high concentrations of $1a$.

As a considerable amount of any other product was observed at hydride concentrations up to ca. 0.9 M in benzene, a finely ground sample of $1a$ was treated with neat HMS. Analysis of this reaction mixture by 1H NMR showed the formation of $2a$ and ca. 13% of $3a$, the thexidimethylsilyl molybdenum complex, as predicted by the proposed radical chain mechanism.

The trace amounts of molybdenum dimers [CpMo(CO)$_2$(I$_2$)$_2$] formed in eq 1 are consistent with chain termination during the reaction. A ca. 10-fold increase in the initial rate is observed upon addition of a few mole percent of triphenylmethyl radical (as the dimer). In a separate experiment, stoichiometric reaction of trityl dimer with $1a$ in the absence of HMS produced triphenylmethane and [CpMo(CO)$_2$(I)$_2$], presumably from the coupling of $2a$ and $3a$, the thexidimethylsilyl molybdenum complex, as predicted by the proposed radical chain mechanism.

In summary, silylene transfer from HMS to molybdenum hydrides is quantitative, and appears to proceed by radical chain ring opening and olefin elimination to yield a transient silyl radical. The apparent stabilization of the silyl radical by metal substitution suggests that radical paths may be more common with metal complexes of silicon ligands than is generally observed in organosilicon chemistry.

Acknowledgment

We thank the Research Corporation for an Exxon Education Foundation Grant, the University of Pennsylvania Research Fund, and the National Science Foundation (MRL Program, under Grant DMR-8519059) for support of this research.

Registry No. $1a$, 12176-06-6; $1b$, 78392-89-9; 2a, 55177-91-8; 2b, 108083-21-2; 3a, 108083-22-3; H$_2$. (CpMo(CO)$_2$I)$_2$, 12091-64-4; [CpMo(CO)$_2$I$_2$]$_2$, 69364-22-9; 2,3-dimethyl-2-buten-1,563-79-1; 3-(diphenylmethylene)-6-(triphenylmethyl)-1,4-cyclohexadiene, 18909-18-7; trimethylsilylamine, 519-73-3.

The kinetics and thermodynamics of long-range (10–100 Å) electron transfer (ET) for several ruthenium-modified metalloproteins have been reported recently. Electron transfer in these systems has been measured from a reduced surface ruthenium(II) (aRu, $a = N\text{H}_2$) to an oxidized-protein center (either Fe$^{3+}$ or Cu$^{2+}$). Measurement of ET in the reverse direction, however, requires formation of a mixed-valence ruthenium(III)–reduced-protein complex, a species that was inaccessible by methods previously employed. We have now developed a technique utilizing flash photolysis to generate this key intermediate, thereby enabling us to measure ET rates from the iron(II)–heme to different ruthenium(III) histidine-48 acceptors in sperm whale myoglobin (Mb). In this system the closest donor–acceptor edge–edge distance is 13 Å.

Our methodology for studying ET from a reduced-protein center to a covalently bound ruthenium acceptor is summarized in Scheme I; the kinetics are followed using flash spectroscopic techniques. Flash photolysis generates electronically excited tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)$_3$$^{2+}$), a powerful oxidant, which is quenched via electron transfer from Ru$^{3+}$ to Met$^{2+}$ (R$_2$Mo) metalloprotein complex (R$^{2+}$-PFe$^+$). Fe$^{2+}$ is iron(II)–heme or other reduced-protein center) in a rapid bimolecular step to yield Ru$^{3+}$-PFe$^+$. In order to observe the intramolecular ET process, Ru$^{3+}$-PFe$^+$ → Ru$^{2+}$-PFe$^+$, it is essential that Ru(bpy)$_3$$^{2+}$ be efficiently removed from the system; otherwise, the exergonic (ΔG $=$ 1.1 V) back reaction (k$_b$, Scheme I) will rapidly regenerate Ru$^{2+}$-PFe$^+$. We have found that a suitable scavenger system for aequous solution experiments consists of nickel(II) hexamethylenetetraazocyclohexane (Ni$^{2+}$/Me$_6$C$_6$) and 3-bromopropionic acid (RBr). In this system Ni$^{2+}$/Me$_6$C$_6$ is reduced by Ru(bpy)$_3$$^{2+}$ to the Ni$^{2+}$/Me$_6$C$_6$ species, which then reacts irreversibly with RBr.

With this technique, we have measured the Fe$^{3+}$ to Ru$^{2+}$ ET kinetics in aRu (histidine-48-modified myoglobin (aRu-M$^{3+}$-Fe$^{2+}$)), a system in which the reduction potentials of the heme and the pentaammineruthenium are closely matched (ΔG $=$ 20 mV). The change in the heme absorption at 556 nm following flash photolysis of a solution containing aRu-M$^{3+}$-Fe$^{2+}$ is shown in Figure 1. Immediately after the flash, a small net bleaching is observed (the direct oxidation of the heme by Ru(bpy)$_3$$^{2+}$), followed by a relatively slow further oxidation that can be assigned to

to intramolecular ET: \(a_{Ru}^{III}(48)MbFe^{III} \rightarrow a_{Ru}^{III}(48)MbFe^{III} \). This oxidation of the Fe\(^{II}\)-heme follows first-order kinetics for at least three half-lives with an observed rate constant of 0.058 s\(^{-1}\). The kinetics were found to be independent of protein concentration (5–50 mM), thereby establishing that bimolecular ET processes are not significant.

Our finding that the observed rate constant is independent of the initial \([Ru^{III}PF_{6}]^{3+} : [Ru^{II}PF_{6}]^{2+}\) ratio demonstrates unequivocally that long-range ET in \(a_{Ru}(48)MbFe \) is reversible.

We have also employed the new methodology to measure the long-range ET rate in myoglobin modified at histidine-48 with apyRu (apy = pyridine). This derivative of myoglobin was prepared and characterized by procedures analogous to those employed for \(a_{Ru}(48)MbFe \). The overall driving force for Fe\(^{II}\) to Ru\(^{III}\) ET in \(apy_{Ru}(48)MbFe \) is 220 mV larger than in \(a_{Ru}(48)MbFe \). The general features of the kinetics are similar to those previously discussed for the \(a_{Ru} \)-modified protein except that the overall reaction is considerably faster. The measured Fe\(^{II}\) to Ru\(^{III}\) long-range ET rate at 2.5 s\(^{-1}\) indicates that Ru\((48)MbFe \) follows Marcus theory with a reorganization energy \((\lambda)^{2} \) similar to those reported for related protein\(^{10,11}\) and steroid-spacer \(^{12}\) ET reactions. In terms of the Hoffman–Ratner treatment of gated ET reactions, \(^{13}\) our findings are of particular relevance because they show that the rates of long-range ET in ruthenium-modified myoglobins are not controlled by conformational interconversions.\(^{14}\)

Acknowledgement. We thank Brian Hoffman, Walter Ellis, and Andy Axup for helpful discussions. This research was supported by National Science Foundation Grant CHE85–18793. C.M.L. acknowledges postdoctoral fellowship support from the NIH.

Figure 1. (a) Change in optical density of the heme absorption at 556 nm following flash photolysis of a 0.1 M, pH 7 phosphate solution containing \(a_{Ru}(48)MbFe \) (5 mM), Ru(bpy)\(^{3+}\) (65 mM), Ni\(^{II}\)Me\(^{2+}\) (5 mM), and RBr (20 mM); 25°C. (b) First-order plot of the experimental data (●). The line is a least-squares fit for these points.

Scheme 1

\[
\begin{align*}
Ru(bpy)_3^{2+} & \text{ flash photolysis } \rightarrow Ru(II)-PF_6^{2-} + Ru(bpy)_3^{2+} \\
Ru(bpy)_3^{2+} & \text{ scavenger } \rightarrow Ru(III)-PF_6^{3-} + Ru(bpy)_3^{3+}
\end{align*}
\]

Novel Synthesis of a Polyketone via Radical Ring-Opening Polymerization of 2,2-Diphenyl-4-methylene-1,3-dioxolane

Yoichi Hiraguri and Takeshi Endo*

Research Laboratory of Resources Utilization
Tokyo Institute of Technology
Nagatsuta-cho, Midori-ku, Yokohama 227, Japan
Received January 26, 1987

Although the ionic ring-opening polymerization has been widely investigated, few papers have reported on the free radical ring-opening polymerization. Recent examples of the free radical ring-opening polymerization involve the vinylcyclopropanes, unsaturated spiro orthocarbonates, unsaturated spiro ortho esters, 2-phenyl-3-vinylxolanes, cyclic ketene acetals such as 2-methylene-1,3-dioxolane, and 2-methylene-4-phenyl-1,3-dioxolane. In the course of researching the radical ring-opening polymerization of 2-substituted-4-methylene-1,3-dioxolanes, it was found that a polyketone was obtained in good yield by the polymerization of 2,2-diphenyl-4-methylene-1,3-dioxolane (1) accompanying the quantitative elimination of benzophenone without any side reactions. Although some ways of synthesizing a polyketone, such as the copolymerization of ethylene with carbon monoxide under high pressure, the oxidation of poly(vinyl alcohol), the cationic polymerization of a ketene or diketene, and
